jueves, 28 de agosto de 2008

HOLLMAN ORTIZ ALBAN
ROWINZON SALAMANCA
JESUS ALEXANDER GAVIRIA

viernes, 22 de agosto de 2008

TECNOLOGIAS DE LA AUTOMATIZACION POR LOGICA CABLEADA

LOGICA CABLEADA
[Photo]












DEFINICION Y CARACTERISTICAS GENERALES
Su denominación viene dada por el tipo de elementos que intervienen en su implementación. En el caso de la tecnología eléctrica, las uniones físicas se realizan mediante cables eléctricos, relés electromagnéticos, interruptores, pulsadores, etc. En lo que respecta a la tecnología electrónica, las puertas lógicas son los elementos fundamentales mediante los cuales se realizan los controladores, la lógica cableada frente a la lógica programada presenta los siguientes inconvenientes: imposibilidad de realización de funciones complejas de control, gran volumen y peso, escasa flexibilidad frente a modificaciones, reparaciones costosas


En la acepción de los técnicos electromecánicos, la lógica cableada industrial es la técnica de diseño de pequeños a complejos autómatas utilizados en plantas industriales, básicamente con relés cableados. En la acepción de los técnicos en telecomunicaciones y en informática, la lógica cableada utiliza compuertas lógicas discretas (TTL, CMOS, HCMOS), para implementar circuitos digitales de comunicaciones y computadores.

La lógica cableada industrial consiste en el diseño de automatismos con circuitos cableados entre contactos auxiliares de relés electromecánicos, contactores de potencia, relés temporizados, diodos, relés de protección, válvulas óleo-hidráulicas o neumáticas y otros componentes. Los cableados incluyen funciones de comando y control, de señalización, de protección y de potencia. La potencia además de circuitos eléctricos comprende a los circuitos neumáticos (mando por aire a presión) u óleo hidráulicos (mando por aceite a presión). Crea automatismos rígidos, capaces de realizar una serie de tareas en forma secuencial, sin posibilidad de cambiar variables y parámetros. Si se ha de realizar otra tarea será necesario realizar un nuevo diseño. Se emplea en automatismos pequeños, o en lugares críticos, donde la seguridad de personas y maquinas, no puede depender de la falla de un programa de computación.

MECANICA
Es la rama de la física que describe el movimiento de los cuerpos, y su evolución en el tiempo, bajo la acción de fuerzas. El conjunto de disciplinas que abarca la mecánica convencional es muy amplio y es posible agruparlas en cuatro bloques principales:
Mecanica clasica ,Mecanica cuantica, Mecania teorivista , Teoria cuanticade los campos
La mecánica es una ciencia física, ya que estudia fenómenos físicos. Sin embargo, mientras algunos la relacionan con las matemáticas, otros la relacionan con la ingeniería. Ambos puntos de vista se justifican parcialmente ya que, si bien la mecánica es la base para la mayoría de las ciencias de la ingeniería clásica, no tiene un carácter tan empírico como estas y, en cambio, por su rigor y razonamiento deductivo, se parece más a la matemática.

ELECTRICA
La electricidad es un fenómeno físico originado por cargas eléctricas, estáticas o en movimiento, y por su interacción. Cuando una carga se encuentra en reposo produce fuerzas sobre otras situadas en su entorno. Si la carga se desplaza produce también fuerzas magnéticas. Hay dos tipos de carga eléctrica, llamadas positiva y negativa.
La electricidad está presente en algunas partículas subatómicas. La partícula fundamental más ligera que lleva carga eléctrica es el electrón, que transporta una unidad de carga. Los átomos, en circunstancias normales, contienen electrones, y a menudo los que están más alejados del núcleo se desprenden con mucha facilidad. En algunas sustancias, como los metales, proliferan los electrones libres. De esta manera, un cuerpo queda cargado eléctricamente gracias a la reordenación de los electrones.
Un átomo normal tiene cantidades iguales de carga eléctrica positiva y negativa; por lo tanto, es eléctricamente neutro. La cantidad de carga eléctrica transportada por todos los electrones del átomo, que por convención es negativa, está equilibrada por la carga positiva, localizada en el núcleo. Si un cuerpo contiene un exceso de electrones quedará cargado negativamente. Por lo contrario, con la ausencia de electrones, un cuerpo queda cargado positivamente, debido a que hay más cargas eléctricas positivas en el núcleo.
Energía eléctrica

ELECTRONICA
La electrónica, es la rama de la física y fundamentalmente una especialización de la ingeniería que estudia y emplea sistemas cuyo funcionamiento se basa en la conducción y el control del flujo microscópicos de los electrones u otras partículas cargadas eléctricamente.
Utilizando una gran variedad de dispositivos desde las válvulas termoiónicas hasta los semiconductores. El diseño y la construcción de circuitos electrónicos para resolver problemas prácticos, forma parte de los campos de la Ingeniería electrónica, electromecánica y la informática en el diseño de software para su control. El estudio de nuevos dispositivos semiconductores y su tecnología, se suele considerar una rama de la Física y química relativamente.
Aplicaciones de la electrónica
La electrónica desarrolla en la actualidad una gran variedad de tareas. Los principales usos de los circuitos electrónicos son el control, el procesado, la distribución de información, la conversión y la distribución de la energía eléctrica. Estos dos usos implican la creación o la detección de campos electromagnéticos y corrientes eléctricas. Entonces se puede decir que la electrónica abarca en general las siguientes áreas de aplicación:


ELECTRONEUMATICA
Es la aplicación en donde combinamos dos importantes ramos de la automatización como son la neumática (Manejo de aire comprimido) y electricidad y/o la electrónica.Sus ventajas: Mediana fuerza (porque se pueden lograr fuerzas mucho mas altas con la hidráulica). Altas velocidades de operación. Menos riesgos de contaminación por fluidos (especialmente si se utiliza en la industria de alimentos o farmacéutica). Menores costos que la hidráulica o la electricidad neta.Desventajas: alto nivel sonoro. No se pueden manejar grandes fuerzas. El uso del aire comprimido, si no es utilizado correctamente, puede generar ciertos riesgos para el ser humano. Altos costos de producción del aire comprimido.

ELECTROMECANICA
En ingeniería, la electromecánica combina las ciencias del electromagnetismo de la ingeniería eléctrica y la ciencia de la mecánica. La mecatrónica es la disciplina de la ingeniería que combina la mecánica, la electrónica y la tecnología de la información, entre otras cosas, como programación a niveles elevados.

Los dispositivos electromecánicos son aquellos que combinan partes eléctricas y mecánicas para conformar su mecanismo. Ejemplos de estos dispositivos son los motores eléctricos y los dispositivos mecánicos movidos por estos, así como las ya obsoletas calculadoras mecánicas y máquinas de sumar; los relés; las válvulas a solenoide; y las diversas clases de interruptores y llaves de selección eléctricas
skip to main | skip to sidebar TECNOLOGIAS DE LA AUTOMATIZACION
domingo 25 de mayo de 2008LAS TECNOLOGÍAS DE AUTOMATIZACIÓN POR LÓGICA CABLEADA

ELECTRÓNICA

Automatización Electrónica Cableada
• Uso de componentes electrónicos:
– Puertas lógicas.
– Registros de desplazamiento.
– Temporizadores.
– Contadores.
– Biestables.
– Multiplexores/Demultiplexores.
– Sumadores.
– Etc.


La electrónica es el campo de la ingeniería y de la física aplicada relativo al diseño y aplicación de dispositivos, por lo general circuitos electrónicos, cuyo funcionamiento depende del flujo de electrones para la generación, transmisión, recepción, almacenamiento de información, entre otros. Esta información puede consistir en voz o música como en un receptor de radio, en una imagen en una pantalla de televisión, o en números u otros datos en un ordenador o computadora.
Los circuitos electrónicos ofrecen diferentes funciones para procesar esta información, incluyendo la amplificación de señales débiles hasta un nivel que se pueda utilizar; el generar ondas de radio; la extracción de información, como por ejemplo la recuperación de la señal de sonido de una onda de radio (demodulación); el control, como en el caso de introducir una señal de sonido a ondas de radio (modulación), y operaciones lógicas, como los procesos electrónicos que tienen lugar en las computadoras.
La electrónica es una de las herramientas básicas en la automatización, ya que se pueden combinar una gran gama de estos componentes.
Componentes electrónicos utilizados en la automatización


Componentes electrónicos


o Tubos de vacío
o Transistores
o Circuitos integrados
o Resistencias
o Bobinas
o Dispositivos de detección y transductores



ELECTRICIDAD

Los componentes eléctricos son los más comunes en todo tipo de industria. En los siguientes puntos comentaremos sobre aquellos componentes que son necesarios en cualquier sistema de automatización.

MOTORES C.A.

Los motores de inducción son los más empleados de todos los tipos, por su poco mantenimiento y robustez.
Entre los diferentes tipos de motores de c.a. que han aparecido en el mercado para variar la velocidad, ninguno ha sido aceptado por la industria (Ej.: Tipo Vector). Tanto que aún se buscan los motores de rotor devanado para arranques pesados y un control burdo de velocidad, lo que es suficiente en algunas aplicaciones.

MOTORES C.D.
Han caído en desuso en nuestro país por la gran difusión de los inversores electrónicos como medio para variar la velocidad de motores, lo que anteriormente fue reino del motor de c.d. en su totalidad.
Pero, con la llegada de los motores de imán permanente en potencias menores a 3 HP y, de nuevos y baratos controles de velocidad en c.d., los motores de corriente directa no han podido ser reemplazados de potencias pequeñas.

SERVOMOTORES
Esta clase de motores han proliferado en gran medida con la automatización. Ya sea con tacómetro o más aún con codificador de posición para la retroalimentación de velocidad y/o posición al control electrónico.
En general son de imán permanente para un control preciso del par motor.

OTROS MOTORES
Existen en el mercado motores llamados de pulso o de paso, con los que se puede controlar posicionamiento sin recurrir a costosos servosistemas. Invariablemente requieren un control especial para su funcionamiento.


CONTROLES DE MOTORES
Entre tantos tipos de controles de motores en el mercado, podemos clasificarlos en varios grandes grupos:

ARRANCADORES
Un arrancador consiste en la combinación de un contacto y un relevador de sobrecargas conectadas entre sí y a una estación de botones, ya sea remota o local.
En el mercado existen dos tipos de arrancadores para la misma función. Los que siguen las normas NEMA y los de tipo europeo o IEC.
La diferencia entre ambos es la filosofía de diseño. El NEMA está fabricado para todos los motores que correspondan a una potencia, y en cambio, el IEC, de acuerdo con el número de arranques y de sobrecargas del motor, se selecciona el arrancador.

VARIADORES DE C.D.
Por muchos años ha sido empleado este tipo de control, debido a su construcción sencilla, y aplicación sin problemas.
Muchos controles de éstos han sido fabricados para retroalimentación de velocidad por tacómetro.

INVERSORES
Con los circuitos integrados de muy alta densidad y semiconductores de potencia baratos, ha sido posible la fabricación de sistemas de control de velocidad de corriente alterna a precios competitivos con los de c.d.
Existen dos tipos, los de modulación de voltaje (PWM en Inglés) y los de modulación de corriente. Los primeros causan gran interferencia con otros equipos electrónicos por el gran contenido de armónicas que producen. Los segundos, más caros, son más eficientes y no causan gran interferencia.
SERVOCONTROLES
Los servocontroles son amplificadores de muy alta ganancia que se retroalimentan con la información proveniente de los tacómetros de los servomotores.
Estos amplificadores reciben como entrada una señal analógica de un control manual o automático; esto es, de un potenciómetro o de un PLC por ejemplo.
Su uso es muy específico para lugares donde se requiere exactitud en la velocidad y/o en la posición de una máquina. Ejemplo: Los servos de las máquinas herramienta de control numérico.


CABLES Y ALAMBRES
Se tiene una gama completa de cables a la disposición de las industrias para la conexión de los diferentes elementos de las máquinas.
Además, se implementó un sistema de Verificación privado de Instalaciones Eléctricas, para que se cumplan las Normas de Seguridad mínima al manejar la electricidad.
o BOTONES Y SEÑALIZACION
Los botones de señalización eléctrica han sufrido un cambio en los últimos años bajo la influencia de las normas europeas y de los nuevos sistemas electrónicos de control.
El cableado de hace unas décadas debía resistir algunos amperes de corriente y, por ende los contactos de todos los interruptores.
o CONTROLES ALAMBRADOS
Estos controles han estado presentes desde el inicio de la Electricidad hace 100 años y, aún siguen vigentes en nuestros días.
En ciertas aplicaciones no hay mejor control ni más barato que el control alambrado. Ej. El control de velocidad sin retroalimentación de un motor de corriente directa mediante un reóstato de campo.

ELECTRONEUMÁTICA

Es la aplicación en donde combinamos dos importantes ramos de la automatización como son la neumática (Manejo de aire comprimido) y electricidad y/o la electrónica.Sus ventajas: Mediana fuerza (porque se pueden lograr fuerzas mucho mas altas con la hidráulica). Altas velocidades de operación. Menos riesgos de contaminación por fluidos (especialmente si se utiliza en la industria de alimentos o farmacéutica). Menores costos que la hidráulica o la electricidad neta.Desventajas: alto nivel sonoro. No se pueden manejar grandes fuerzas. El uso del aire comprimido, si no es utilizado correctamente, puede generar ciertos riesgos para el ser humano. Altos costos de producción del aire comprimido
En electroneumática, la energía eléctrica substituye a la energía neumática como el elemento natural para la generación y transmisión de las señales de control que se ubican en los sistemas de mando.
Los elementos nuevos y/o diferentes que entran en juego están constituidos básicamente para la manipulación y acondicionamiento de las señales de voltaje y corriente que deberán de ser transmitidas a dispositivos de conversión de energía eléctrica a energía neumática para lograr la activación de los actuadores neumáticos

La electroneumática es la aplicación en donde combinamos dos importantes ramas de la automatización como son la neumática (manejo de instalaciones de aire comprimido) y electricidad y/o la electrónica.
.La electroneumática ha sufrido un espectacular desarrollo en los últimos años (en detrimento de la neumática), debido principalmente a su simplicidad de mando y sus múltiples posibilidades de combinación con otras técnicas de mando (eléctrica, electrónica, PLC´s, etc.).
Esquema de un circuito electro neumatico

ELECTROHIDRAULICA

En la actualidad, en las medianas y grandes empresas de producción,
se tienen implementados procesos que poseen la necesidad de emplear
elevadas cantidades de energía. El empleo de la energía hidráulica
se hace presente en este momento. Máquinas de producción y montaje;
equipos de elevación; prensas; máquinas de moldeo; grúas, entre
otros, son áreas en donde se requieren grandes esfuerzos y presiones
que tanto la energía neumática como eléctrica no son apropiadas
ya sea por razones económicas o por las magnitudes delos esfuerzos
requeridos.


Esencialmente hablando, la diferencia que existe en el área de diseño
de circuitos es poca entre la neumática y la hidráulica.
La robustez de los elementos hidráulicos, como es de suponerse, es
mayor que en los neumáticos.
Dispositivos de seguridad y el empleo de bombas en vez de com-
presores son algunas de esas diferencias. Por lo mismo, no existe
mayor dificultad para pasar de manera inmediata a la solución de
problemas simples en el área de la electrohidráulica.

Dirección asistida electrohidráulica

La dirección asistida electrohidráulica se basa en el conocido sistema de dirección asistida hidráulica. La principal diferencia entre ambos reside en el accionamiento de la bomba hidráulica que genera la presión necesaria para la dirección asistida. En el caso de la dirección asistida electrohidráulica, esta bomba es accionada por un motor eléctrico cuyo funcionamiento es adaptado al nivel de dirección asistida requerido.Cuando el vehículo está parado o circulando a velocidades muy bajas, se incrementa el ritmo de bombeo de la bomba hidráulica para proporcionar un alto grado de dirección asistida. Circulando a velocidades elevadas, se reduce la velocidad de la bomba, dado que no se requiere asistencia.Las ventajas de la dirección asistida electrohidráulica radican en el plus de comodidad que ofrecen en la forma de la dirección suave al maniobrar y mucho más firme al circular a gran velocidad. Además, ahorra combustible, dado que sólo consume energía cuando es necesario.


CUADRO COMPARATIVO ENTRE
LAS TECNOLOGÍAS POR LÓGICA CABLEADA



[Photo]





1 – 2 de 2

LOGICA PROGRAMADA



Un microcontrolador es un circuito integrado o chip que incluye en su interior las tres unidades funcionales de una computadora: CPU, Memoria y Unidades de E/S, es decir, se trata de un computador completo en un solo circuito integrado






Características
Son diseñados para disminuir el coste económico y el consumo de energía de un sistema en particular. Por eso el tamaño de la CPU, la cantidad de memoria y los periféricos incluidos dependerán de la aplicación. El control de un electrodoméstico sencillo como una batidora, utilizará un procesador muy pequeño (4 u 8 bit) por que sustituirá a un autómata finito. En cambio un reproductor de música y/o vídeo digital (mp3 o mp4) requerirá de un procesador de 32 bit o de 64 bit y de uno o mas Códec de señal digital (audio y/o vídeo). El control de un sistema de frenos ABS (Antilock Brake System) se basa normalmente en un microcontrolador de 16 bit, al igual que el sistema de control electrónico del motor en un automóvil.

Esquema de un microcontrolador
Los microcontroladores representan la inmensa mayoría de los chips de computadoras vendidos, sobre un 50% son controladores "simples" y el restante corresponde a DSPs más especializados. Mientras se pueden tener uno o dos microprocesadores de propósito general en casa (vd. está usando uno para esto), usted tiene distribuidos seguramente entre los electrodomésticos de su hogar una o dos docenas de microcontroladores. Pueden encontrarse en casi cualquier dispositivo electrónico como automóviles, lavadoras, hornos microondas, teléfonos, etc...
Un microcontrolador difiere de una CPU normal, debido a que es más fácil convertirla en una computadora en funcionamiento, con un mínimo de chips externos de apoyo. La idea es que el chip se coloque en el dispositivo, enganchado a la fuente de energía y de información que necesite, y eso es todo. Un microprocesador tradicional no le permitirá hacer esto, ya que espera que todas estas tareas sean manejadas por otros chips. Hay que agregarle los modulos de entrada/salida (puertos) y la memoria para almacenamiento de información.
Por ejemplo, un microcontrolador típico tendrá un generador de reloj integrado y una pequeña cantidad de memoria RAM y ROM/EPROM/EEPROM/FLASH, significando que para hacerlo funcionar, todo lo que se necesita son unos pocos programas de control y un cristal de sincronización. Los microcontroladores disponen generalmente también de una gran variedad de dispositivos de entrada/salida, como convertidores de analógico a digital, temporizadores, UARTs y buses de interfaz serie especializados, como I2C y CAN. Frecuentemente, estos dispositivos integrados pueden ser controlados por instrucciones de procesadores especializados. Los modernos microcontroladores frecuentemente incluyen un lenguaje de programación integrado, como el BASIC que se utiliza bastante con este propósito.
Los microcontroladores negocian la velocidad y la flexibilidad para facilitar su uso. Debido a que se utiliza bastante sitio en el chip para incluir funcionalidad, como los dispositivos de entrada/salida o la memoria que incluye el microcontrolador, se ha de prescindir de cualquier otra circuitería.

PLC

Un autómata programable industrial (API) o Programable logic controller (PLC), es un equipo electrónico, programable en lenguaje no informático, diseñado para controlar en tiempo real y en ambiente de tipo industrial, procesos secuenciales.
Un PLC trabaja en base a la información recibida por los captadores y el programa lógico interno, actuando sobre los accionadores de la instalación.

Campos de aplicación
El PLC por sus especiales características de diseño tiene un campo de aplicación muy extenso. La constante evolución del hardware y software amplía constantemente este campo para poder satisfacer las necesidades que se detectan en el espectro de sus posibilidades reales.
Su utilización se da fundamentalmente en aquellas instalaciones en donde es necesario un proceso de maniobra, control, señalización, etc. , por tanto, su aplicación abarca desde procesos de fabricación industriales de cualquier tipo a transformaciones industriales, control de instalaciones, etc.
Sus reducidas dimensiones, la extremada facilidad de su montaje, la posibilidad de almacenar los programas para su posterior y rápida utilización, la modificación o alteración de los mismos, etc., hace que su eficacia se aprecie fundamentalmente en procesos en que se producen necesidades tales como:
Espacio reducido
Procesos de producción periódicamente cambiantes
Procesos secuenciales
Maquinaria de procesos variables
Instalaciones de procesos complejos y amplios
Chequeo de programación centralizada de las partes del proceso

Ejemplos de aplicaciones generales:
Maniobra de máquinas
Maquinaria industrial de plástico
Máquinas transfer
Maquinaria de embalajes
Maniobra de instalaciones:
Instalación de aire acondicionado, calefacción...
Instalaciones de seguridad
Señalización y control:
Chequeo de programas
Señalización del estado de procesos

Ventajas e inconvenientes
No todos los autómatas ofrecen las mismas ventajas sobre la lógica cableada, ello es debido, principalmente, a la variedad de modelos existentes en el mercado y las innovaciones técnicas que surgen constantemente. Tales consideraciones me obligan e referirme a las ventajas que proporciona un autómata de tipo medio.

CNC
Se considera de Control Numérico por Computador, también llamado CNC (en inglés Computer Numerical Control) (también Control Numérico Continuo Continuos Numerical Control) a todo dispositivo capaz de dirigir el posicionamiento de un órgano mecánico móvil mediante órdenes elaboradas de forma totalmente automática a partir de informaciones numéricas en tiempo real. Para maquinar una pieza se usa un sistema de coordenadas que especificarán el movimiento de la herramienta de corte.
Entre las operaciones de maquinado que se pueden realizar en una máquina CNC se encuentran las de torneado y de fresado. Sobre la base de esta combinación es posible generar la mayoría (si no son todas) las piezas de industria.
Este es, sin duda, uno de los sistemas que ha revolucionado la fabricación de todo tipo de objetos, tanto en la industria metalúrgica como en muchos otros ámbitos productivos.



Principio de funcionamiento


El sistema se basa en el control de los movimientos de la herramienta de trabajo con relación a los ejes de coordenadas de la máquina, usando un programa informático ejecutado por un ordenador. En el caso de un torno, hace falta controlar los movimientos de la herramienta en dos ejes de coordenadas: el eje de las X para los desplazamientos laterales del carro y el eje de las Z para los desplazamientos transversales de la torre. En el caso de las fresadoras se controlan los desplazamientos verticales, que corresponden al eje Z. Para ello se incorporan motores eléctricos en los mecanismos de desplazamiento del carro y la torreta, en el caso de los tornos, y en la mesa en el caso de la fresadora; dependiendo de la capacidad de la maquina, esto puede no ser limitado únicamente a tres ejes.



Aplicaciones


Aparte de aplicarse en las [máquinas-herramienta] para modelar metales, el CNC se usa en la fabricación de muchos otros productos de ebanistería, carpintería, etc. La aplicación de sistemas de CNC en las máquinas-herramienta han hecho aumentar enormemente la producción, al tiempo que ha hecho posible efectuar operaciones de conformado que era difícil de hacer con máquinas convencionales, por ejemplo la realización de superficies esféricas manteniendo un elevado grado de precisión dimensional. Finalmente, el uso de CNC incide favorablemente en los costos de producción al propiciar la baja de costes de fabricación de muchas máquinas, manteniendo o mejorando su calidad.


COMPUTADOR INDUSTRIAL


Un pc industrial es una computadora diseñada para trabajar en ambientes como por ejemplo industrias donde las condiciones del lugar son extramadamente fuertes como temperaturas a alto o bajo grado , estan hechas para que puedan soportar el polvo y los cambios fuertes de temperatura sin que se vaya a ver afectado su funcionamiento y su sistema operativo es diseñado unicamente para trabajos correspondientes a la industria.


ROBOTICA


La robótica es una rama de la tecnología, que estudia el diseño y construcción de máquinas capaces de desempeñar tareas repetitivas, tareas en las que se necesita una alta precisión, tareas peligrosas para el ser humano o tareas irrealizables sin intervención de una máquina. Las ciencias y tecnologías de las que deriva podrían ser: el álgebra, los autómatas programables, las máquinas de estados, la mecánica, la electrónica y la informática.


REDES INDUSTRIALES Y SISTEMAS

REDES INDUSTRIALES

Las redes de comunicaciones industriales deben su origen a la fundación FieldBus (Redes de campo). La fundación FieldBus, desarrollo un nuevo protocolo de comunicación, para la medición y control de procesos donde todos los instrumentos puedan comunicarse en una misma plataforma.

Las comunicaciones entre los instrumentos de proceso y el sistema de control se basan principalmente en señales analógicas (neumáticas de 3 a 15 psi en las válvulas de control y electrónicas de 4 a 20 mA cc). Pero ya existen instrumentos digitales capaces de manejar gran cantidad de datos y guardarlos históricamente; su precisión es diez veces mayor que la de la señal típica de 4-20 mA cc. En vez de transmitir cada variable por un par de hilos, transmiten secuencialmente las variables por medio de un cable de comunicaciones llamado bus.

Ventajas de un bus de campo:

- El intercambio puede llevar a cabo por medio de un mecanismo estándar.
- Flexibilidad de extensión.
- Conexión de módulos diferentes en una misma línea.
- Posibilidad de conexión de dispositivos de diferentes procedencias.
- Distancias operativas superiores al cableado tradicional.
- Reducción masiva de cables y costo asociado.
- Simplificación de la puesta en servicio.

Desventajas de un bus de campo:

- Necesidad de conocimientos superiores.
- Inversión de instrumentación y accesorios de diagnóstico.
- Costos globales inicialmente superiores.

CLASIFICACION DE LAS REDES INDUSTRIALES:
Si se clasifican las redes industriales en diferentes categorías basándose en la funcionalidad, se hará en:

Buses Actuadores y Sensores :Inicialmente es usado un sensor y un bus actuador en conexión simple, dispositivos discretos con inteligencia limitada, como un foto sensor, un switch limitador o una válvula solenoide, controladores y consolas terminales.

Buses de Campo y Dispositivos:Estas redes se distinguen por la forma como manejan el tamaño del mensaje y el tiempo de respuesta. En general estas redes conectan dispositivos inteligentes en una sola red distribuida.(Delta V de Emmerson)Estas redes ofrecen altos niveles de diagnóstico y capacidad de configuración, generalmente al nivel del poder de procesamiento de los dispositivos más inteligentes. Son las redes más sofisticadas que trabajan con control distribuido real entre dispositivos inteligentes, tal es el caso de FIELDBUS FOUNDATION.

BENEFICIOS DE UNA RED INDUSTRIAL:

- Reducción de cableado (físicamente)
- Dispositivos inteligentes (funcionalidad y ejecución)
- Control distribuido (Flexibilidad)
- Simplificación de cableado de las nuevas instalaciones
- Reducción de costo en cableado y cajas de conexión
- Aplicable a todo tipo de sistema de manufactura
- Incremento de la confiabilidad de los sistemas de producción
- Optimización de los procesos existentes.

CELDAS DE MANOFACTURA INTEGRADA CIM


Nivel de controlador de planta


Es el más alto nivel de la jerarquía de control, es representado por
la computadora central (mainframes) de la planta que
realiza las funciones corporativas como: administración de
recursos y planeación general de la planta.
Nivel de controlador de área
Es representado por las computadoras (minicomputadoras) de
control de las operaciones de la producción. Es responsable de la
coordinación y programación de las actividades de las celdas de
manufactura, así como de la entrada y salida de material.
Conectada a las computadoras centrales se encuentra la
computador de análisis y diseño de ingeniería donde se
realizan tareas como diseño del producto, análisis y prueba.
Adicionalmente, este nivel realiza funciones de planeación
asistida por computadora (CAP, por sus siglas en inglés), diseño
asistido por computadora (CAD, por sus siglas en inglés) y
planeación de requerimientos de materiales (MRP, por sus siglas
en inglés).



Nivel de controlador de celda.

La función de este nivel implica la programación de las órdenes de manufactura y
coordinación de todas las actividades dentro de una celda integrada de
manufactura. Es representado por las computadoras (minicomputadoras, PC´s
y/o estaciones de trabajo). En general, realiza la secuencia y control de los
controladores de equipo.
Nivel de controlador de procesos o nivel de controlador de estación de trabajo
Incluye los controladores de equipo, los cuales permiten automatizar el
funcionamiento de las máquinas. Entre estos se encuentran los controladores
de robots (RC´s), controles lógicos programables (PLC´s), CNC´s, y
microcomputadores, los cuales habilitan a las máquinas a comunicarse con los
demás (incluso en el mismo nivel) niveles jerárquicos



Nivel de equipo
Es el más bajo nivel de la jerarquía, está representado por los
dispositivos que ejecutan los comandos de control del nivel
próximo superior. Estos dispositivos son los actuadores,
relevadores, manejadores, switches y válvulas que se encuentra
directamente sobre el equipo de producción. De una manera más
general se considera a la maquinaria y equipo de producción
como representativos de este nivel.



CUADRO COMPARATIVO ENTRE LAS TECNOLOGIAS POR LOGICA PROGRAMADA
PARA ACCEDER AL CUADRO COMPARATIVO ENTRE LAS TECNOLOGIAS DE AUTOMATIZACION POR LOGICA PROGRAMADA HACER CLICK EN ESTE ENLACE
http://tecnologiasautomatizacion.blogspot.es/img/programada.doc



CUADRO COMPARATIVO ENTRE LAS TECNOLOGIAS POR LOGICA CABLEADA
PARA ACCEDER AL CUADRO COMPARATIVO ENTRE LAS TECNOLOGIAS DE AUTOMATIZACION POR LOGICA CABLEADA